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A B S T R A C T

Contemporary commentators describe the current period as “an era of fake news” in which misinformation,
generated intentionally or unintentionally, spreads rapidly. Although affecting all areas of life, it poses particular
problems in the health arena, where it can delay or prevent effective care, in some cases threatening the lives of
individuals. While examples of the rapid spread of misinformation date back to the earliest days of scientific
medicine, the internet, by allowing instantaneous communication and powerful amplification has brought about
a quantum change. In democracies where ideas compete in the marketplace for attention, accurate scientific
information, which may be difficult to comprehend and even dull, is easily crowded out by sensationalized news.
In order to uncover the current evidence and better understand the mechanism of misinformation spread, we
report a systematic review of the nature and potential drivers of health-related misinformation. We searched
PubMed, Cochrane, Web of Science, Scopus and Google databases to identify relevant methodological and
empirical articles published between 2012 and 2018. A total of 57 articles were included for full-text analysis.
Overall, we observe an increasing trend in published articles on health-related misinformation and the role of
social media in its propagation. The most extensively studied topics involving misinformation relate to vacci-
nation, Ebola and Zika Virus, although others, such as nutrition, cancer, fluoridation of water and smoking also
featured. Studies adopted theoretical frameworks from psychology and network science, while co-citation
analysis revealed potential for greater collaboration across fields. Most studies employed content analysis, social
network analysis or experiments, drawing on disparate disciplinary paradigms. Future research should examine
susceptibility of different sociodemographic groups to misinformation and understand the role of belief systems
on the intention to spread misinformation. Further interdisciplinary research is also warranted to identify ef-
fective and tailored interventions to counter the spread of health-related misinformation online.

1. Introduction

The spread of misinformation is not new, dating back at least to the
early days of printing. Even the term “fake news”, which has achieved
considerable contemporary prominence, was first coined in 1925, when
an article in Harper's Magazine, entitled “Fake News and the Public”
mourned how newswires were allowing misinformation to disseminate
rapidly (McKernon, 1925). The growth of the Internet has, however,
initiated a fundamental change. In 2013, the World Economic Forum
warned that potential “digital wildfires” could cause the “viral spread”
of intentionally or unintentionally misleading information (World
Economic Forum, 2013). In the health arena, much concern has focused
on the spread of misinformation on immunisation, with social media
acting as a powerful catalyst for the ‘anti-vaxxer movement’. By

encouraging individuals not to vaccinate their children, this movement
has been linked to recent measles outbreaks in countries such as the UK,
the US, Germany and Italy (Datta et al., 2017; Filia et al., 2017). The
prevalence and persistence of such misinformation justifies a careful
and systematic review of published literature on the nature and the
mechanisms by which misinformation spreads.

1.1. Defining terminology: what is misinformation?

We first review the distinctions between various terms that relate to
misinformation. Following the 2016 US presidential election, the term
“fake news” attracted substantial media and scholarly attention. The
term overlaps with other forms of misleading information, and espe-
cially misinformation and disinformation, all conveying messages,
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stories, theories, or opinions that spread rapidly through social contacts
or online media. They differ primarily with respect to intent and mode
of spread. Misinformation involves information that is inadvertently
false and is shared without intent to cause harm, while disinformation
involves false information knowingly being created and shared to cause
harm (Wardle and Derakhshan, 2017). Although “fake news” is the
term that received most popular attention, it is arguably the most
problematic one in terms of definitional rigour. Lazer et al. (2018)
described it as fabricated information that mimics news media content,
but this does not capture the complexity of the phenomenon, which can
include both satire and information created deliberately to mislead as a
means to achieve a political or other goal (Wardle, 2017). A recent
report by a parliamentary committee in the UK concluded that “The
term ‘fake news’ is bandied around with no clear idea of what it means,
or agreed definition (House of Commons, 2019). The term has taken on
a variety of meanings, including a description of any statement that is
not liked or agreed with by the reader. We recommend that the Gov-
ernment rejects the term ‘fake news’, and instead puts forward an
agreed definition of the words ‘misinformation’ and ‘disinformation’”.
Since the phrase also has been politicized by powerful figures to dis-
credit certain news media (Vosoughi et al., 2018), we refrain from using
the term “fake news” throughout the paper.

While noting these distinctions, in practice it often seems difficult to
differentiate these categories because of the problem in ascertaining
intent. For example, anti-vaccine propaganda may be spread by those
who have a genuine concern, however misguided, about safety, and by
those who are using the issue as a tool to undermine trust in particular
governments. Thus, unless the intent is clear, we use the term mis-
information as an umbrella term to include all forms of false information
related to health, thereby giving those generating it the benefit of the
doubt.

1.2. Misinformation spread – from micro-to macro-level

Before discussing the macro-phenomenon of misinformation spread,
we first conceptualize the potential mechanism following Wardle and
Derakhshan (2017). Three major components are involved in the
creation, production, distribution and re-production of misinformation
– agent, message and interpreter (Wardle and Derakhshan, 2017). Our
review will look at whether and how existing literature from different
disciplines examine the type of actor behind the creation of health-re-
lated messages on social media platforms, the descriptive features of the
message – the durability and distribution of accurate and misleading
information - and most importantly, the interpreter's response and how
it contributes to the reproduction of misinformation. At the micro-level,
individuals who receive misinformation form judgement about the
believability of the message, depending on information source, narra-
tive and context, while the tendency to spread depends on the degree to
which receivers suspect such misinformation (Karlova and Fisher,
2013). At the macro-level, we observe patterns of misinformation cas-
cade and characteristics of networks.

Early literature on spread of rumours (circulating stories or reports
of uncertain or doubtful truth) identified the “basic law of rumour” –
the amount of rumour in circulation will vary with the importance of
the subject to the individuals concerned times the ambiguity of the
evidence pertaining to the topic in question (Allport and Postman,
1947). The link between psychological and cultural dimensions gen-
erated intriguing questions on what makes misinformation so easy to
spread and so hard to debunk.

According to Allport and Postman (1947), the ambiguity of the
message may be due to the receipt of conflicting stories, with no one
more credible than another. The concept of credibility, as investigated
extensively in communications research, encompasses message cred-
ibility, source credibility, and media credibility (Metzger et al., 2003).
With traditional media, each aspect of information credibility is rela-
tively well understood, although even there some caution is needed. In

contrast, with social media, it is particularly challenging to assess the
source credibility, as users themselves are the self-publisher, subject to
no form of factual verification or accountability. We do know that
people regard information from the internet as being as credible as
conventional media such as television and radio, but not as that from
newspapers (Johnson and Kaye, 1998; Kim and Johnson, 2009). Many
studies have thus analysed the credibility of user-generated contents
and the cognitive process involved in the decision to spread online
information on social and political events (Abbasi and Liu, 2013;
Castillo et al., 2011; Lupia, 2013; Swire et al., 2017). This research has
highlighted the importance of source credibility and persuasiveness as
factors affecting the susceptibility of users to the messages conveyed.
Other relevant studies have focused on important concepts such as
misperception and confirmation bias, whereby people's views on factual
matters are strongly influenced by prior beliefs (Taber and Lodge, 2006;
Nyhan and Reifler, 2010; Jerit and Barabas, 2012); polarization within
networks (Lewandowsky et al., 2012); and the combined effects of these
phenomenon facilitated by social media (Del Vicario et al., 2016;
Boutyline and Willer, 2017; Shao et al., 2018). While much of the ex-
isting literature has examined social and political issues, we focus on
misinformation related to health and wellbeing.

1.3. Misinformation and health: gaps in the evidence base

There is limited understanding of why certain individuals, societies
and institutions are more vulnerable to misinformation about health.
This is perhaps surprising, as health promotion and public health re-
searchers now pay considerable attention to the potential of the in-
ternet as a tool to diffuse health-related information (Chew and
Eysenbach, 2010; Ritterband and Tate, 2009; Murray et al., 2009;
Scanfeld et al., 2010; Signorini et al., 2011), employing smart phones
and other mobile technologies in preventative interventions (Abroms
et al., 2013; Eng and Lee, 2013; Free et al., 2013; Steinhubl et al.,
2015). Although the internet provides immense opportunities, it also
lowers the cost of generating and disseminating information, allowing
misinformation and sensationalized stories to propagate. What was
once spread locally can rapidly become global, with ideas no longer
confined or delayed by geography. This has generated a series of studies
of information diffusion (Serrano et al., 2015), rumour spread (He
et al., 2015), and consequent behavioural changes (Salathé and
Khandelwal, 2011; Wakamiya et al., 2016). These generally employ
sophisticated modelling and simulation techniques to identify the ru-
mour propagation dynamics. However, this is still in its infancy and one
recent systematic review of behavioural change models found that most
papers investigating spread of health-related information and beha-
vioural changes are theoretical, failing to use real-life social media data
(Verelst et al., 2016). The literature on misinformation spread is
growing, but spans disparate disciplines, including communication
studies, epidemiology, psychology, and computational science. We
contend that it is now necessary to integrate the different perspective
and methodologies, to understand the characteristics of susceptible
populations and to devise interventions that are most effective in
countering this spread.

To address this gap and provide a comprehensive view on the
available evidence, we undertake what is, to our knowledge, the first
systematic review of studies that investigated the health-related mis-
information content on social media and how it spreads online. We
include papers stemming from different disciplines and we analyse
them on different dimensions.

First, we identify the main health-related topics where mis-
information tends to spread and the descriptive features of mis-
information. By focusing on the content and the spread of different
health-related misinformation, we reveal a broad landscape of issues
that attract actors to espouse misleading claims. The findings shed light
on the extent to which different topics are identified and investigated in
the literature. This approach can inform those working in these areas.
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This seeks to inform social scientists, psychologists, and experts in
other fields working to understand this issue, who may otherwise
overlook the range of theories that underpin the work of researchers
seeking to conceptualize the spread of misinformation. As this is a
phenomenon that can be examined from many different perspectives,
we have undertaken a co-citation analysis to assess the extent to which
different disciplinary paradigms are informing each other, thereby fa-
cilitating future interdisciplinary research that can contribute to a more
inclusive theoretical framework.

We then explore the existing theories used to explain the phenom-
enon and undertake a co-citation analysis to ascertain the extent to
which ideas spread among disciplinary communities.

We further discuss the different empirical strategies adopted in the
analysis. In doing so, we identify the social media platforms where the
authors obtain the empirical data, how they incorporate different sta-
tistical models to interpret the data, and the empirical progress in our
understanding of the mechanism. We conclude by examining the po-
tential for future interdisciplinary research and practical interventions
to counter misinformation spread.

2. Methods

2.1. Design and search strategy

Our reporting strategy follows the PRISMA guidelines (Moher et al.,
2009). We searched PubMed, Cochrane, Web of Science (WoS) and
Scopus for records published between January 2012 and November
2018, using the following search terms in title and abstract:

(i) [misinformation OR fake news OR disinformation OR rumo* OR
false OR mislead*]

AND

(ii) [online OR social OR media OR news OR twitter OR Facebook OR
google]

AND

(iii) [spread OR propagate* OR disseminat* OR circulat* OR commu-
nicat* OR diffuse OR broadcast]

AND

(iv) [health OR disease OR infectious OR virus OR vaccin* OR Ebola
OR Zika OR measles]

This yielded 206 records from PubMed, 33 records from Cochrane,
341 records from Web of Science, 51 records from Scopus and 62 re-
cords from Google (Fig. 1.). We identified and removed duplicates,
which resulted in 651 records that were first screened based on title,
abstract, and keywords and then using full-text where necessary. All
eligible references were uploaded into reference management software
(Mendeley) for assessment of eligibility.

2.2. Screening and eligibility assessment

Next, we screened the results of the 651 records based on title and
abstract. Articles that were not original, not involving social media, not
related to health, not in English and not on human subjects were ex-
cluded. At this, and the subsequent stage, we also excluded the very
extensive literature on individual cognitive biases, which would be well
beyond the scope of a single review. Similarly, we excluded research on
static group decision-making, which can create misinformation (e.g. the
phenomenon termed groupthink), that subsequently spreads.

This left 131 potentially eligible papers, which were subject to full-

text analysis, applying the following pre-specified eligibility criteria:
Misinformation. Only records that concern misinformation, disin-

formation, fake news, rumour or any form of information disorder were
included.

Social media. Misinformation had to be propagated through online
media.

Health. Only records related to disease, treatments, public health
and wellbeing were included.

Model or empirical. Modelling (e.g. epidemiological, rumour spread)
studies or empirical analysis of the distribution or the dynamic effect of
misinformation.

Humans. We are interested in humans and behaviour of humans,
and therefore excluded studies about animals and plants.

Original research. We excluded review articles and editorials.
Language. We excluded articles written in languages other than

English.
Finally, we excluded papers that lacked analytic rigour or did not

incorporate misinformation as the main component of the analysis,
which resulted in 57 articles. The PRISMA (Fig. 1) shows the results of
these exclusions.

2.3. Data extraction

For the 57 included studies, we analysed the following elements in
the full-text: (i) health-related issues and findings; (ii) theoretical fra-
mework (if any) and disciplines; (iii) study design.

2.4. Co-citation analysis

To gain further insights on the disciplines contributing to this in-
creasing area of research, we conducted a co-citation analysis of eligible
articles to measure the frequency with which two sources are cited
together by other documents. Co-citation analysis yields insight into
potential disciplinary siloes and theoretical or methodological gaps in
the literature. This was possible with 121 of the papers because 10
articles were not indexed on Scopus, where we extracted citation data
from.

3. Results

Fig. 2 shows the number of potentially eligible articles by year. Not
surprisingly, the number of studies that investigated health-related
misinformation increased over the years, from 7 in 2012 to 41 in 2018
(November) with a sharp rise in 2017. The trend implied the growing
scholarly interest in the social phenomenon, potentially amplified by
major political events in 2016. We exclude certain articles (n=74) due
to their lack of analysis or interpretation of misinformation as men-
tioned above, and the remainder of this result section relates only to the
57 remaining papers after full-text analysis.

Key features of the studies included are in the web appendix. We
first investigated what health-related topics have been studied in rela-
tion to misinformation. The largest category relates to communicable
diseases (n=30), including vaccination in general (8) and specifically
against Human Papilloma Virus (HPV), Measles, Mumps and Rubella
(MMR) and influenza (3, 2 and 1 respectively), as well as infections
with Zika virus (9), Ebola (4), influenza (1), Middle East Respiratory
Syndrome (1) and Nile Virus (1). Many articles concern chronic non-
communicable diseases such as cancer (3), cardiovascular disease (3),
psoriasis (1) and bowel disease (1). Some also address issues of diet and
nutrition (3), smoking (3) and water safety or quality (2). Five studies
cover a broad range of health-related misinformation or rumour online,
while the remaining studies were placed in a miscellaneous category,
addressing other specific diseases, health problems or medical inter-
ventions (Fig. 3). We now briefly describe each of these in turn.
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Fig. 1. PRISMA flow diagram.

Fig. 2. Numbers of potentially eligible articles.
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3.1. Health-related issues and findings

3.1.1. Vaccines and communicable diseases
Vaccine uptake, especially in children, has fluctuated in recent

decades in many developed countries, with marked declines during
certain periods. In 2012, the journal Vaccine devoted a special issue to
“The Role of Internet Use in Vaccination”, analysing some of the
communication strategies used by both the anti-vaccination movement
and public health professionals. Authors recommended comprehensive,
structured, and easily understandable responses to anti-vaccination
messages (Betsch and Sachse, 2012; Kata, 2012; Reyna, 2012;
Nicholson and Leask, 2012). Although refusal of vaccination and
movements opposing vaccines date back to the time of Jenner, pub-
lication of fraudulent research linking the MMR vaccine to autism and
bowel disease (Wakefield et al., 1998) was a seminal moment. The
concerns raised then, although long since discredited, have been widely
disseminated on social media and even now are highly influential
among some groups. For instance, Basch et al. (2017), Donzelli et al.
(2018) and Porat et al. (2018) report high online prevalence and po-
pularity of autism-related discussions in fora on vaccination. Tustin
et al. (2018) and Xu and Guo (2018) also reported widespread mis-
information about side effects, as well as mistrust in government or
pharmaceutical companies in discussions on vaccination. Krishna's
(2017) study of active propagators of these messages found that those
who were knowledge-deficient and vaccine-averse exhibit higher levels
of activity than those who are not. Aquino et al. (2017) reported a
significant inverse correlation between MMR vaccination coverage and
online searches and social network activity on “autism and MMR vac-
cine”. Taken as a whole, the research identifies anti-vaxxer and mem-
bers of online communities favouring conspiracy theories as sources or
propagators of misinformation, with discussions tending to revolve
around rhetorical and personal arguments that induce negative emo-
tions (fear, anger, sadness). Although there is less misinformation than
accurate information, the former has greater popularity among viewers.

The Zika epidemic stimulated considerable activity on Twitter
(Wood, 2018) and Facebook (Sharma et al., 2017), as well as spread of
news items (Sommariva et al., 2018), images (Seltzer et al., 2017), and
videos (Bora et al., 2018) on a range of media. Conspiracy theories
directed at institutions feature frequently in these discussions. For in-
stance, the Zika virus was portrayed as a bioweapon, while rumours
spread that the Zika vaccine had been developed to depopulate the
earth (Sommariva et al., 2018; Wood, 2018). Conspiracist ideation

played a crucial role in one's belief in misinformation (Lewandowsky
et al., 2013). However, Bode and Vraga (2018) did not find that belief
in conspiracies reduced receptiveness to correction of misinformation
on Zika virus, although this research generated several important in-
sights for design of interventions to address this issue.

The Ebola outbreak also provided much additional material. For
instance, Fung et al. (2016) examined the role of Twitter and Sina
Weibo (Chinese microblog, equivalent to Twitter) in spreading rumours
and speculating on treatments. Pathak et al. (2015) found numerous
misleading videos online concerning Ebola virus disease. Similar to the
studies on vaccination, much of this misinformation comes from in-
dividuals who are highly active in influencing opinions, and rumours
often garner higher popularity than evidence-based information.

3.1.2. Chronic non-communicable diseases
Though most research on misinformation has focused on infectious

disease, misinformation on chronic illnesses such as cancer and cardi-
ovascular disease are not uncommon on social media. Okuhara et al.
(2017) looked at online discussions with opposing views on cancer
screening in Japan, finding that most propagated anti-cancer screening
messages. Staying in Asia, Chen et al. (2018a,b) examined the nature
and diffusion of misinformation on gynaecologic cancer in China. Chua
and Banerjee (2018) found that individuals are more likely to trust and
share cancer-related rumours if the rumours are dreadful rather than
wishful, and if one has had previous personal experience.

Studies on other chronic diseases mostly speculate on or promote
alternative treatments, for example on diabetes (Leong et al., 2017),
heart failure (Chen et al., 2013), hypertension (Kumar et al., 2014) and
psoriasis (Qi et al., 2016). Again, misleading videos are more influen-
tial. In addition, research by Leong et al. (2017) in India found that
diabetes videos tailored to South Asians were more misleading than
those not culturally-targeted.

3.1.3. Others
Unsubstantiated messages regarding diets and nutrition can have

detrimental effects on susceptible individuals. For instance, Syed-Abdul
et al. (2013) investigated how anorexia is promoted as fashion and
linked to ideas of beauty in YouTube videos, gaining high popularity
among young female viewers. Bessi et al. (2015), analysing the diffu-
sion of diet, environment and geopolitics-related misinformation, found
that active users are more likely to span a range of categories, and that
online groups promoting conspiracy theories tend to exhibit

Fig. 3. Topic categories.
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polarization. Similar patterns are observed in discussions on water
fluoridation, as memorably invoked in the 1964 movie Dr. Strangelove.
Seymour et al. (2015) analysed the anti-fluoride network online and
found that strong ties among the community are obstacles for expert
opinions to be accepted. This indicates that social homogeneity may
well be the primary driver of content diffusion and clustering. The
modelling of rumour spread is therefore informative of the cascades'
size and potential intervention designs in countering such spread.

The tobacco industry has a long history of distorting scientific evi-
dence and misleading consumers. Very recently, Albarracin et al.
(2018) showed how misleading portrayal of tobacco's health con-
sequences introduces positivity towards smoking. The advent of elec-
tronic cigarettes prompted Harris et al. (2014) to examine content and
tweet patterns related to an e-cigarette campaign by a local public
health department. The misinformation included arguments that divert
attention from the products to messages that sought to discredit au-
thorities.

A few studies have investigated specifically the psychology of in-
dividuals who believe and share rumours. Chua and Banerjee (2017), in
their analysis on epistemic belief and its effect on the decision to share
rumour, showed that epistemologically naïve users have higher pro-
pensity to share online health rumours. Li and Sakamoto (2015) dis-
covered that exposing individuals to measures of collective opinion,
through counts of retweets and collective truthfulness ratings could
reduce the tendency to share inaccurate health-related messages. Taken
as a whole, the evidence indicates that the motivation to believe and
share rumours reflects both individual and collective makings, but the
consequences are difficult to predict because of the complex psycho-
logical factors involved.

Finally, the group of miscellaneous studies mainly examined spe-
cific medical interventions or issues such as drugs (Al Khaja et al.,
2018), paediatric disease (Strychowsky et al., 2013), abortion (Bryant
et al., 2014), dialysis (Garg et al., 2015), suicide (Li et al., 2018) and
multiple sclerosis (Lavorgna et al., 2018). The common sources of
misinformation included advertisements or comments related to ad-
vertisements (Garg et al., 2015) and patients' anecdotal experiences
(Strychowsky et al., 2013). Again, misinformation was more popular
than factual messages.

3.2. Theoretical frameworks and disciplines (co-citation analysis)

We next investigated the theoretical foundations in the included
studies, but it rapidly became clear that there was no widely agreed
approach to this phenomenon, reflecting the broad range of disciplines
that have investigated it. The more dominant disciplines and research
areas according to the published journals include public health, health
policy and epidemiology (n= 14), health informatics (n=8), com-
munications studies (n= 5), vaccines (=4), cyberpsychology (n= 3)
and system sciences (n= 3).

Disciplinary approaches adopted to conceptualize the phenomenon
are varied, but primarily fall within the fields of psychology (n= 8) and
communication (n=4), as well as network science (n=7). While
theories in psychology focus on individual-level cognitive response to
misinformation and its corrections, frameworks in network and data
science characterise the (online) societal mechanisms involved. For
instance, Chua and Banerjee (2018), in investigating the online beha-
viour in the face of health rumours, invoked the seminal rumour theory
(Allport and Postman, 1947), which views personal involvement as a
common perception that dictates one's decision to spread rumour.
Moreover, rumours that are repeatedly circulated can be reinforced and
accepted as credible (Rosnow, 1991), and the consequent perceived
high credibility can in turn increase intention to trust and share ru-
mours (Shin et al., 2017). This relates to credibility research, which
suggests that perceived credibility and can heighten the persuasive
impact, especially for internet users who are not motivated to process
information (Metzger, 2007; Metzger et al., 2010). Similarly, Ozturk

et al. (2015) explored how different social media settings can reduce
rumour spread based on rumour psychology research. Others have re-
ferred to psychological studies around conspiracist ideation, inocula-
tion theory and social conformity in understanding the mechanism
behind health misperception on social media (Bode and Vraga, 2018;
Bora et al., 2018; Li and Sakamoto, 2015). Contrastingly, the use of
system or network theories are aimed at explaining the patterns of
social influence, social learning, social contagion and homophily and
polarization processes (Bessi et al., 2015; Radzikowski et al., 2016;
Schmidt et al., 2018; Sicilia et al., 2017; Wood, 2018). The framework
typically assists the subsequent social network analysis.

Two studies borrowed insights from philosophy – Grant et al. (2015)
employed the rhetorical framework to examine the persuasive features
of pro- and anti-vaccine sites, while Chua and Banerjee (2017) used the
epistemology framework to explore the role of epistemic belief in af-
fecting rumour-sharing behaviour. Finally, situational theory of publics
(Grunig, 1997) from public relation studies are adopted to identify
vaccine-negative activists (Krishna, 2017). The remaining articles from
computational studies and clinical perspectives lack any theoretical
underpinning and are purely empirical.

Given that the findings are from disparate disciplines, we conduct
the co-citation analysis on all the potentially eligible articles to identify
the clusters of disciplinary communities. In co-citation network ana-
lysis, the unit of analysis is the cited source, and we include the journals
cited at least 5 times within the 121 articles. As seen in Fig. 4, the
distance in the map between any pair of journals reflects their similarity
to each other (van Eck and Waltman, 2010), and we use the LinLog/
modularity normalization technique to minimize the distance between
connected nodes (Noack, 2009). The size of the nodes represents the
number of citations, and the line indicates the presence of citation in
either direction. The analysis identified 4 distinct (inter-)disciplinary
clusters, which we assigned as follows (with randomly generated col-
ours, from left to right): Social Psychology and Communications (red),
General Science and Medicine (blue), Infectious Disease/Vaccine and
Public Health (green), Medical Internet and Biomedical Science
(purple). Overall, the literature is concentrated in general science and
vaccines/infectious diseases. Psychology and communications litera-
ture sit on the periphery, with relatively less cross-citation with the
science and medicine literature. Interestingly, we also observe a few
sociology journals at the bordering regions between clusters, implying
their incipient roles in acknowledging different insights across dis-
ciplines. There is potential for greater interdisciplinary collaboration.

3.3. Study design

Turning to research design, most studies employed content analysis
(n= 38) either alone or as a component of the analysis, studying var-
ious forms of social media (n= 10), YouTube videos (n= 12), Twitter
or equivalents (n=8), websites (n=5), images (n= 1) or mobile
messengers (n=2). Authors observe the distribution of useful and
misleading information, and the pattern of consumption by different
users. Some studies incorporated social network analysis or epidemio-
logical modelling to better explain the dynamics of misinformation
spread (Bessi et al., 2015; Ghenai and Mejova, 2017; Harris et al., 2014;
Jin et al., 2014; Radzikowski et al., 2016; Wood, 2018). Many designs
were also complemented by sentiment measures, for instance, the “anti-
vaccine” sentiment (Bahk et al., 2016; Xu and Guo, 2018).

Seven studies used experimental designs. Bode and Vraga, in three
different papers, manipulated Facebook's “related news” function to
confirm or correct (or both) misinformation about the purported link
between vaccines and autism, as well as unfounded link between ge-
netically modified organisms (GMO) and health (Bode and Vraga, 2015;
Vraga and Bode, 2017). They also simulated Twitter feeds with false
information about Zika virus to evaluate the ability of corrective re-
sponses to reduce misperception (Vraga and Bode, 2017). Chua and
Banerjee (2017, 2018) undertook web-based experiments with
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participants exposed to combinations of rumours and counter-rumours.
Ozturk et al. (2015) explored different ways to reduce rumour spread
on Twitter using Amazon's Mechanical Turk, an online crowdsourcing
platform. Albarracin et al. (2018) used the same platform to evaluate
the effects of YouTube videos on viewer attitudes to tobacco products.

A few studies used survey instruments to understand how social
media can spread misconceptions about Ebola in West Africa
(Adebimpe et al., 2015) and inflammatory bowel disease in the USA
(Groshek et al., 2017), and to explore the relationship between
knowledge deficiency and negative attitudes towards vaccines (Krishna,
2017). One case-study adopted an anthropological approach and used
thick description to review the rhetorical features of both pro-vaccine
and vaccine-sceptical websites Grant et al. (2015).

4. Discussion

4.1. Findings

We found that, while there have been studies of the spread of
misinformation on a wide range of topics, the literature is dominated by
those of infectious disease, including vaccines. Overall, existing re-
search finds that misinformation is abundant on the internet and is
often more popular than accurate information. Several of the studies
address areas where state action challenges individual autonomy. The
classic example is vaccination, where effective protection of the popu-
lation requires achievement of levels of uptake sufficient to achieve
herd immunity. This review confirms that misconceptions about MMR
vaccine and autism, in particular, remain prevalent on social media
(Aquino et al., 2017; Chen et al., 2018a,b). Other topics share scientific
uncertainty, with the authorities unable to provide confident explana-
tions or advice, as with newly emerging virus infections such as Ebola
and Zika viruses (Basch et al., 2017; Fung et al., 2016; Sommariva et al.,
2018).

The agents that create misinformation are mostly individuals with
no official or institutional affiliations. This relates to our initial dis-
cussions on credibility – what makes a source trustworthy for readers?
Formal institutions are increasingly challenged by the rise of, for

instance, “expert patient”, blurring the boundaries between authority
and quasi-proficiency (Seymour et al., 2015). Traditional vertical
health communication strategies are eroded by horizontal diffusion of
conspiracy-like messages. The narratives of misinformation are domi-
nated by personal, negative and opinionated tones, which often induce
fear, anxiety and mistrust in institutions (Bessi et al., 2015; Panatto
et al., 2018; Porat et al., 2018). When people are frightened and
doubtful, they can be more susceptible to misinformation. Once false
information gains acceptance in such circumstances, it is difficult to
correct, and the effectiveness of interventions vary according to each
individual's personal involvement, literacy and socio-demographic
characteristics, features that tend to be under-explored in existing re-
search.

The included articles adopted disparate theoretical approaches in
conceptualizing the phenomenon, with the dominant frameworks from
the fields of psychology and network science. Theories employed in
psychology aimed to explain individual-level cognitive response of
misinformation and rumour online (Bode and Vraga, 2018; Bora et al.,
2018; Chua and Banerjee, 2018; Li and Sakamoto, 2015; Ozturk et al.,
2015), whereas network theories focus on the social mechanism and
patterns of misinformation spread (Bessi et al., 2015; Radzikowski
et al., 2016; Schmidt et al., 2018; Sicilia et al., 2017; Wood, 2018).
Further co-citation analysis on all articles that investigated the phe-
nomenon revealed that the disciplinary landscape concentrates around
general science and vaccines/infectious disease, while psychology and
communication studies have less cross-citation with the science and
medicine literature. The sociology discipline has great potential to
bridge the different communities.

Researchers have employed increasingly sophisticated analytic
techniques for empirical analysis, such as the use of social media data
for sentiment analysis. The majority of the articles included a content
analysis of the information on social media, ranging from text, images
and videos. Several studies employed complexity and network theories
to model the dynamics of rumour spread and opinion polarization
(Bessi et al., 2016; Jin et al., 2014). Other studies have adopted psy-
chological and linguistic perspectives (Fung et al., 2016; Li et al., 2018;
Waszak et al., 2018). While we have excluded research on both

Fig. 4. Co-citation analysis. We extracted citation data from Scopus and analysed citation patterns using network-clustering algorithms in VOSviewer 1.6.8. The
network map shows co-citation patterns of 121 journals cited at least 5 times within the studies that are potentially eligible. The node size represents the number of
citations, and the lines represent the presence of citation in either direction. We restricted the minimum cluster size to 20, which resulted in 4 disciplinary clusters
and 2367 links. We were not able to identify 10 articles because they were not indexed on Scopus, we therefore exclude them for the co-citation analysis.
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individual and group biases, we feel it is important to note how several
studies invoked the concept of confirmation bias, concluding that it plays
an important role in creating online echo-chambers (Bessi et al., 2015;
Donzelli et al., 2018). This highlights the need for much more research
on the socio-psychological characteristics of those who believe and
propagate misinformation. In particular, there is a need to understand
better the roles of both ideology and belief systems (Jost et al., 2018)
and what might be termed “lazy thinking” (Pennycook and Rand,
2018). For instance, although the role of literacy and cues to credibility
are critical concepts in the design of experiments, they should also be
explored in empirical studies, and especially those that use big data
from social media platforms.

4.2. Gaps and potential for future research

Although sociology and psychology pioneered research to under-
stand rumour (Allport and Postman, 1947; Bartlett, 1932; Kirkpatrick,
1932), psychologists are only beginning to study the implications of the
explosion in internet use (Stone and Wang, 2018). While we conclude
from the co-citation analysis that studies on misinformation in health
cover a wide range of disciplines, there is a marked lack of inter-
disciplinary research. This could, for example, allow hypotheses to be
generated by social scientists using rumour theory and tested using
quantitative analysis of social media data.

While most of the studies recommended courses of action based on
their results, only a handful of papers proposed specific and tested in-
terventions to reduce misinformation spread. For instance, Ozturk et al.
(2015) discovered that rumour-countering warnings such as “this tweet
may contain misinformation” did decrease participants' likelihood of
sharing a rumour, consistent with findings in the psychological litera-
ture (Bordia and Difonzo, 2004). Bode and Vraga (2018) showed that
algorithmic correction (by a platform) and social correction (by peer)
are equally effective in correcting misinformation and call for cam-
paigns to encourage users to refuse false or misleading information. The
same authors have shown how expert organization can correct mis-
information without damaging its credibility, presenting an appealing
intervention to reduce misinformation spread (Vraga and Bode, 2017).

Finally, there is a need to characterise the scale and nature of the
phenomenon much better, for example with studies of which socio-
demographic characteristics make social media users more susceptible
to and therefore likely to share health-related misinformation.

4.3. Limitations

Before concluding, we will note several limitations of the systematic
review. First, although we have attempted to define the phenomenon
we are studying, our search strategy may not capture the terminology
used by others. This is not just a problem of language. There are many
related phenomena, such as denialism, groupthink, fearmongering, and
equivalents in other languages, such as Lügenpresse (lying press) in
German and it is possible that these or others may be used, in some
circumstances, to describe some elements of what we are studying.
Second, even when we agree the terms, such as misinformation and
‘fake news’, the meanings adopted by authors can vary. Third, as noted
at the outset, it is very difficult to ascertain the motives of those
spreading particular rumours and myths, leaving us unable to answer
the old question “mad or bad?”. Fourth, while our focus has been on
messages concerning health-related issues, misinformation about other
issues can have health consequences. For instance, a man from North
Carolina travelled to Washington in 2016 and opened fire at a pizzeria
following the spread of what became termed the Pizzagate theory,
whereby it was alleged that the pizzeria was the site of a paedophile
ring organised by Democratic Party leaders. Even though

comprehensively debunked, subsequent polls showed that this allega-
tion was still widely believed. Finally, since we excluded articles that
are not published in English, we may have omitted relevant papers
published in other languages.

5. Conclusion

Social media platforms, although providing immense opportunities
for people to engage with each other in ways that are beneficial, also
allow misinformation to flourish. Without filtering or fact-checking,
these online platforms enable communities of denialists to thrive, for
instance by feeding into each other's feelings of persecution by a corrupt
elite (McKee and Diethelm, 2010). The accumulation of individual
beliefs in these unfounded stories, conspiracy theories, and pseu-
doscience can give rise to social movements, such as the anti-vaccina-
tion movement, with profound consequences for public health. This is
further exacerbated by the fact that it is politically incorrect to question
or criticize the belief of others, and the fight for truth is nevertheless
against the flow of true believers armed with ignorance and mis-
information (Kaufman et al., 2018).

We have shown that academic literature on this social phenomenon
mainly revolves around vaccination and infectious disease, drawing on
various disciplines, frameworks and empirical methods. Among the
articles examined, there is broad consensus that misinformation is
highly prevalent on social media and tends to be more popular than
accurate information, while its narrative often induces fear, anxiety and
mistrust in institutions. The severity and the deleterious effects it may
pose on the society is hardly quantifiable, but evidence abounds that we
need more research on the identification of susceptible populations, and
on the understanding of socio-demographic and ideological asymme-
tries in the intention to spread misinformation.

Finally, since the persistence of misinformation owes both to the
psychological responses and to the social contexts under which mis-
information spread, potential interventions should target both fronts. At
the individual level, although interventions to correct misperceptions
are proven effective at times, efforts to retract misinformation need to
be carried out with caution in order to prevent backfiring. This requires
profound understanding on how epistemic and ideology beliefs act as
obstacles to accepting scientific evidence. A more constructive ap-
proach may be to cultivate critical thinking and to improve health and
media literacy, thereby equipping individuals with the faculty to criti-
cally assess the credibility of information. At the system level, how we
can amend our information ecosystem to reduce selective exposure and
opinion polarization is not a challenge for academics and policy-makers
alone to face. We therefore hope that our review can stimulate social
scientists, psychologists, computer scientist and medical professionals
to not only collaborate with each other, but also engage with industries
and internet consumers to understand and counter the effects of this
increasingly important social phenomenon.
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Appendix Table

Characteristics of Included Studies

Health Issue (by category) Setting/Geographic Focus Theory/Framework Study Design Platforms Authors

Communicable Disease
Ebola Nigeria N/A Survey Facebook, Twitter Adebimpe

et al. (2015)
Ebola Chinese and English-speaking

Countries
N/A Content Analysis (Social

Media)
Sina Weibo, Twitter Fung et al.

(2016)
Ebola US Epidemiological Models Content Analysis (Twitter);

Epidemiological Modelling
Twitter Jin et al.

(2014)
Ebola English-speaking Countries N/A Content Analysis (Video) YouTube Pathak et al.

(2015)
Influenza China Rumour Theory

(Psychology)
Content Analysis (Social
Media)

Sina Weibo, Tencent Weibo Chen et al.
(2018a,b)

Middle East Respiratory S-
yndrome

South Korea N/A Social Network Analysis Twitter, Blogs, Online Community Text,
Discussion Board Text, News sites

Song et al.
(2017)

Nile Virus Infection English-speaking Countries N/A Content Analysis (Video) YouTube Dubey et al.
(2014)

Vaccination (general) English-speaking Countries N/A Content Analysis (Video) YouTube Basch et al.
(2017)

Vaccination (general) Italy N/A Content Analysis (Video) YouTube Donzelli et al.
(2018)

Vaccination (general) US Situational Theory of
Publics (Public
Relations)

Survey Websites Krishna
(2017)

Vaccination (general) Spain N/A Content Analysis (Twitter) Twitter Porat et al.
(2018)

Vaccination (general) English-speaking Countries Network Theory Social Network Analysis Facebook Schmidt et al.
(2018)

Vaccination (general) Canada N/A Content Analysis (Facebook) Facebook Instagram Twitter YouTube Tustin et al.
(2018)

Vaccination (general) English-speaking Countries N/A Sentiment Analysis Google Xu and Guo
(2018)

Vaccination (general) +
GMOs

US Psychological Theory Experiment Facebook Bode and
Vraga (2015)

Vaccination (HPV) US Theory of Rhetorical
Situation (Philosophy)

Qualitative Case Study
(Anthropology)

Websites Grant et al.
(2015)

Vaccination (HPV) US N/A Content Analysis (Social
Media)

Twitter Mahoney
et al. (2015)

Vaccination (influenza) Italy N/A Content Analysis (Website) Websites, Blogs Panatto et al.
(2018)

Vaccination (MMR) Italy N/A Content Analysis (Social
Media)

Google Trend, Twitter, Facebook; National
Institute of Health (Istituto Superiore di
Sanità)

Aquino et al.
(2017)

Vaccination (MMR) US Network Theory Content Analysis (Twitter);
Social Network Analysis

Twitter Radzikowski
et al. (2016)

Vaccination (Polio and H-
PV)

Pakistan, US N/A Sentiment Analysis Mainstream Media, Twitter, Vaccine
Sentimeter

Bahk et al.
(2016)

Zika Virus US Psychological Theory Experiment Facebook, Twitter Bode and
Vraga (2018)

Zika virus English-speaking Countries Inoculation Theory
(Psychology)

Content Analysis (Video) YouTube Bora et al.
(2018)

Zika Virus Global N/A Content Analysis (Twitter);
Social Network Analysis

Twitter Ghenai and
Mejova
(2017)

Zika Virus Global N/A Content Analysis (Image) Instagram flicker Seltzer et al.
(2017)

Zika Virus US N/A Content Analysis (Social
Media)

Facebook Sharma et al.
(2017)

Zika Virus English-speaking Countries Network Theory Social Network Analysis Twitter Sicilia et al.
(2017)

Zika Virus English-speaking Countries N/A Content Analysis (Weibo) Facebook, Twitter, LinkedIn, Pinterest,
GooglePlus, Web links

Sommariva
et al. (2018)

Zika Virus US Psychological Theory Experiment Twitter Vraga and
Bode (2017)

Zika Virus English-speaking Countries Network Theory Content Analysis (Twitter);
Social Network Analysis

Twitter Wood (2018)

Chronic Non-communicable Disease
Cancer
Cancer + Diet and Nutrit-

ion
US Rumour Theory

(Psychology)
Experiment Websites Chua and

Banerjee
(2018)

Cancer Screening Japan N/A Content Analysis (Website) Websites, Blogs, Facebook Okuhara et al.
(2017)
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Gynaecologic Cancer China N/A Content Analysis (Social
Media)

Sina Weibo Tencent Weibo Chen et al.
(2018a,b)

Cardiovascular Disease
Diabetes + Diet India N/A Content Analysis (Video) YouTube Leong et al.

(2017)
Heart Failure English-speaking Countries N/A Content Analysis (Video) YouTube Chen et al.

(2013)
Hypertension English-speaking Countries N/A Content Analysis (Video) YouTube Kumar et al.

(2014)
Other Chronic Non-communicable Disease
Inflammatory Bowel Dise-

ase
English-speaking Countries N/A Survey Facebook, Twitter, YouTube, Website Groshek et al.

(2017)
Psoriasis + Diet English-speaking countries N/A Content Analysis (Video) YouTube Qi et al.

(2016)
Others
Diet and Nutrition
Anorexia English, Spanish, Italian and

Portuguese-speaking
Countries

N/A Content Analysis (Video) YouTube, Vimeo and Voeh Syed-Abdul
et al. (2013)

Diet and Health-related In-
formation

Arabic-speaking Countries N/A Content Analysis (Twitter) Twitter Alnemer et al.
(2015)

Diet and Health-related R-
umour

Italy Network Theory Content Analysis (Social
Media); Social Network
Analysis

Facebook, Twitter and YouTube Bessi et al.
(2015)

Smoking
e-cigarette US (Chicago) Network Theory Content Analysis (Twitter);

Social Network Analysis
Twitter Harris et al.

(2014)
Hookah Tobacco Smoking US N/A Content Analysis (Website) Websites, Facebook, MySpace, Twitter Primack et al.

(2012)
Tobacco US N/A Experiment YouTube Albarracin

et al. (2018)
Water Safety/Quality
Water Fluoridation US N/A Content Analysis (Social

Media)
Facebook, Twitter, YouTube, Website Mertz and

Allukian
(2014)

Water Fluoridation US Network Theory Social Network Analysis;
Sentiment Analysis

Facebook, Websites Seymour et al.
(2015)

General Health (Rumour Psychology)
Health-related Rumours Southeast Asia Epistemology

(Philosophy)
Experiment Websites Chua and

Banerjee
(2017)

Health-related Rumours US Rumour Theory
(Psychology)

Experiment Twitter Li and
Sakamoto
(2015)

Health-related Rumours China N/A Content Analysis (Wechat) Wechat Li et al.
(2017)

Health-related Rumours US Psychological Theory Experiment Twitter, Websites Ozturk et al.
(2015)

Health-related Rumours Poland N/A Content Analysis (Social
Media)

Facebook, Twitter, LinkedIn, Pinterest Waszak et al.
(2018)

Miscellaneous
Abortion US N/A Content Analysis (Website) Websites Bryant et al.

(2014)
Dialysis English-speaking Countries N/A Content Analysis (Video) YouTube Garg et al.

(2015)
Drug Bahrain N/A Content Analysis

(WhatsApp)
WhatsApp Al Khaja et al.

(2018)
Multiple Sclerosis Italy N/A Content Analysis (Website) Websites Lavorgna

et al. (2018)
Paediatric

Tonsillectomy + Diet
English-speaking Countries N/A Content Analysis (Video) YouTube Strychowsky

et al. (2013)
Suicide China N/A Content Analysis (Weibo) Sina Weibo Li et al.

(2018)
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